The Negative Effects of Privilege on Educational Attainment: Gender, Race, Class, and the Bachelor’s Degree*

William Mangino, Hofstra University

Objective. To show that in the contemporary United States, traditionally privileged categories of people—men, whites, and the super-rich—complete four-year college degrees at rates lower than their nonprivileged counterparts—women, nonwhites, and the “99 percent.” Methods. Logistic regression and an educational transitions method are used on the National Longitudinal Study of Adolescent Health (Waves 1 and 4) to predict, given college entrance, who completes a bachelor’s degree. Results. Women, the lower 99 percent of the income distribution, and when economic resources are present, nonwhites all complete college at higher rates than men, the richest 1 percent, and whites, respectively. In a final model, rich white men as a single category are shown to complete college less than everyone else. Conclusion. As previously excluded categories of people have gained access to higher education, the privileged are shifting their reproduction strategies away from schooling.

This article provides evidence that in the contemporary United States, historically privileged people (men, whites, and the “super-rich”) now complete college degrees less than their nonprivileged peers. Empirical support comes from the statistical analysis below that uses a nationally representative sample of Americans, the National Longitudinal Study of Adolescent Health (Add Health). The findings are congruous with three complementary yet insufficiently integrated lines of research called, respectively, the “female advantage,” the “net black advantage,” and Asian Americans as the “model minority.” These widely accepted results show that women, Asians, and, when economic resources are present, black Americans invest in education at rates higher than men and whites, respectively. To these, our analysis will add a new strain:

*Direct correspondence to William Mangino, Department of Sociology, Hofstra University, 202B Davison Hall, Hempstead, NY 11549 (William.Mangino@Hofstra.edu). The author thanks Eric Lopez for outstanding research assistance. The article benefited from comments by Tad Krauze, Marc Silver, and the anonymous reviewers at SSQ. This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due to Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (<http://www.cpc.unc.edu/addhealth>). No direct support was received from grant P01-HD31921 for this analysis.

SOCIAL SCIENCE QUARTERLY
© 2014 by the Southwestern Social Science Association
DOI: 10.1111/ssqu.12003
that children from the top 1 percent of family income complete college at significantly lower rates than one would expect given their high family income. We believe these findings are unified by a common theoretical frame that we refer to as the “privilege hypothesis”: because privileged people have more informal opportunities to deploy a given level of human capital, they opt out of education at earlier points than their less privileged counterparts. The less privileged, on the other hand, have fewer informal opportunities to exchange human capital, and they therefore pursue relatively more education as a strategy toward comparable status and remuneration.

In supporting these positions, the article begins with a literature review that deduces the privileged hypothesis by integrating the two main sociological theories of educational attainment, social mobility and social reproduction. Most important here is the unification of the previously disparate research lines that discuss black, female, and Asian “advantages” in education. We then provide a statistical analysis that parses and reparses the data through numerous iterations. Each time, the findings point to the privilege hypotheses. The article concludes with a discussion of “why Jane reads and writes so well” (Mickelson, 1989, 2003) and reaffirms the findings.

Two Theories of Education

The sociological study of education has operated with two main theoretical framings, social mobility and social reproduction. The former is undergirded by human capital theory (Becker, 1993; Coleman, 1990) and status attainment research (Blau and Duncan, 1967; Sewell et al., 2004). It also informs common-sense understandings of schooling that are portrayed by pundits and policymakers (Grubb and Lazerson, 2004): individual success in a modern economy requires high skills and technical know-how. Increasingly through the 20th century and into the 21st, acquiring such skills has meant a turn to higher education, as college is now the surest route to good careers, high-paying jobs, and the status they bring. Those who do not make such investments “get what they deserve” even though some failures are rational—not everyone can afford the direct and foregone costs of higher education. Those who can afford it have a substantial advantage. Their economic capital opens the opportunity to invest in human capital, which is later remunerated in the job market.

Social reproduction theory also stresses the growing importance of higher education, but the explanation is quite different. Here, schooling is a gatekeeping mechanism and a tool of socialization that limits access to high-status positions and teaches respect for the status quo. Thanks to abundant economic and cultural capital, already-privileged people flock to college as a means of legitimizing their social inheritance. This is less about skills and more about the “piece of paper”—the credential. Since privileged people use credentials to signify themselves and establish monopolies over labor market niches, the “aspiring classes” (previously excluded categories that are now afforded
formal equality in access and evaluation, like women and nonwhites in the United States) also pursue educational certification as a strategy for catching up with the elite. The problem is, as a credential becomes more common, the privileged categories of people pursue even higher certifications to maintain their distinction, and the cycle starts again. On the whole, there is a massive upgrading of education in the population, but the status order (hierarchy) of that population remains steadfast (Rafferty and Hout, 1993). This lineage finds its roots in classics like *Schooling in Capitalist America* (Bowles and Gintis, 1976) and becomes much more nuanced in the veins that follow Bourdieu (e.g., Bourdieu and Passeron, 1979), R. Collins (1979), and critical theory (Crenshaw et al., 1995), including, especially, P. Collins (2009).

Even with the very different lenses, social mobility and social reproduction have one central commonality: an unwavering focus on how advantage operates through the educational system. For social mobility it is about rational investment in marketable skills, and for social reproduction it is about credentials and exclusion. Either way, education and privilege are tightly connected and positively correlated.

Unifying the “Advantages” in Educational Attainment

Despite the seeming truism of the education-status nexus, we are positing that the reverse is true. There are three important educational attainment literatures that, to date, have not been adequately integrated. The first two, called the “female advantage” and the “net black advantage,” respectively, show that women (Buchmann and DiPrete, 2006; Mickelson, 2003; Reynolds and Burge, 2008) and, when economic resources are equal, black Americans (Bennett and Lutz, 2009; Bennett and Xie, 2003; Charles, Roscigno, and Torres, 2007; Conley, 2010; Downey, Ainsworth, and Qian, 2009) graduate from high school and go to college at rates higher than men and whites. The third literature, which is discussed below, is the high attainment of Asian Americans, who are often viewed as the “model minority.” Our statistical analysis adds to these lines by focusing on completion of the bachelor’s degree.

We are surprised that few have synthesized a connection among these educational “advantages” as their fusion points to important insights regarding opportunity and (in)equality in the United States. While the net black advantage is observationally robust and widespread across numerous data sets, theorizing about its causes has been virtually nonexistent (cf. Mangino, 2010; Mason, 1997). On the gender side, the female advantage has been richly theorized. An explanation that we find compelling relates to labor market subordination. Because women experience the glass ceiling (Cotter et al., 2001; Purcell, MacArthur, and Samblanet, 2010), glass cliff (Bruckmuller and Branscombe, 2010; Haslam and Ryan, 2008), lack of comparable worth (Karlin, England, and Richardson, 2002; Levanon, England, and Allison, 2009), occupational segregation (Cohen and Huffman, 2003), and “baby penalty” (Budig and
England, 2001), they turn to education as a compensatory strategy (Goldin, Katz, and Kuziemko, 2006; Jacobs, 2003). In most facile terms, women are not members of the “old boys’ club”; therefore, if they desire independent status attainment, they must overcome their lack of social capital by investing in institutionalized cultural capital—a credential (Bourdieu, 1986). We argue the same logic applies to “race” (Elliott and Smith, 2004; Woo, 2000). In assessing prospects for jobs, legitimacy, and economic opportunity, black Americans, like women, invest in educational credentials at high rates as a strategy to achieve socioeconomic status (SES) parity with their white counterparts.

While detecting the female advantage is easy—as shown below, it appears even in bivariate considerations and remains robust as controls are added—detecting the net black advantage is more challenging. Here, one must control for SES. Since SES is a prime barrier to educational performance and because black Americans are more likely to be born into lower socioeconomic strata, the apparent “race gap” in educational investment turns out to be spurious. Once basic socioeconomic indicators are included, blacks clearly invest in education at rates higher than otherwise equal whites.

It is the need to add control variables that, perhaps, explains why the female advantage and the net black advantage have been pursued in relative isolation from each other. In gender comparisons, controls are not necessary because at birth females are distributed evenly in families across the socioeconomic spectrum. Gendered disadvantage manifests only through the life course as women are exposed to mechanisms that deter economic advancement. Conversely, to understand “race” differences in education, it is imperative that SES is taken into account because black children are not randomly distributed in the income distribution; they are overrepresented at the low end. Once SES is controlled, the similarity in educational investment between women and black Americans is striking.

Besides unifying the female and black “advantages,” it turns out the net black advantage is not only black. We will show that all racial-ethnic minorities in the United States complete the bachelor’s degree at amazingly similar rates, again, once controls are added. This might not seem so surprising for Asians, as their “model minority” status has been studied and contested in depth (Lee, 2009; Zhou and Gatewood, 2000). Like females, the Asian “advantage” shows up in the bivariate—Asians complete educational transitions at rates higher than whites, and it remains robust as controls are added. With controls, blacks perform like Asians, who perform like women, who all complete college at similar rates. But that is not all. Hispanics, in bivariate equations, pursue education less than whites. Add socioeconomic controls, however, and Hispanics fall into line just like females, Asians, and blacks, all of whom complete college at rates higher than their privileged counterparts (men and whites). It seems all subordinated racial and ethnic and gender categories are “model minorities.”

We now must explain an apparent white male “disadvantage” in education. As Bourdieu notes (Bourdieu and Wacquant, 1992:94–114; Swartz, 1997:122–36, 181–83), a seeming deficit in one field is often reflective of
privilege in another. Literature makes clear that compared to men and whites, women, blacks, Hispanics, and Asians all get lower economic and prestige returns on equal amounts of skill and education (Chan and Hune, 1995; Frank, Akresh, and Lu, 2010; Kmec and Trimble, 2009; Royster, 2003; Tomaskovic-Devey, Thomas, and Johnson, 2005; Woldoff and Ovadia, 2009). It is precisely because of these lower absolute returns on human capital that the aspiring classes “overinvest” in the college degree. In bringing one’s capitals to bear in the various (sub)fields of status attainment (i.e., job markets), disproportionately more whites and men get siphoned out of the educational river as they act on the opportunities that superior social, cultural, and economic capitals have brought. The aspiring classes, on the other hand, sail on. On average, they stay the course because fewer opportunities have come their way. They continue to invest in formal credentials as a way to compensate. The idea has been implied elsewhere, for example, Dumais (2002) notes that for academic achievement, females have more need for cultural capital compared to males. Persell, Catsambis, and Cookson Jr. (1992) contend that women require superior economic, cultural, and educational assets to achieve similar attainments to men; and Brand and Xie (2010:293) state that “in the absence of a college degree, individuals from more advantaged social backgrounds can still rely on their superior resources” in order to make a living. It is important to note that investments in education by the aspiring classes are rational despite that their remunerations will be lower compared to their privileged counterparts; simply, what other choices do they have? A black American aphorism captures this idea: it is about having to “work twice as hard to get half as far.”

The Super-Rich Have Less Need for Education

The third leg of our evidentiary tripod, as far as we know, has yet to be proposed or tested. In thinking about our hypothesized causes of educational “advantages,” we keep returning to the centrality of economic resources. In the United States, money is both a means to an education and a goal of an education—one needs money to get an education to get a good job to make lots of money. From the goal end, it strikes us that if one’s economic future is assured a priori to any educational investment decisions, then there is less rationale for the actor to go to college. We expect this to be especially true in the United States, where highbrow culture has minimal hold and where education is viewed in large part for its instrumental benefits. Using this logic, we think that the super-rich have less need for education. Like whites and men, they can “work half as hard and get twice as far.”

\[1\] Having a college degree improves a woman’s earning power more than a man’s (i.e., women have a higher rate of return); however, in absolute terms, men continue to earn more than women at every level of education.
While it seems obvious that children from the most economically elite classes might eschew higher education (assuming parents assure their economic well-being), we arrive at a contradiction. Nearly all studies rightly stress the positive correlation between money and educational attainment, but our logic suggests a negative one. Indeed, there are very real and important educational benefits to money. As we will show, low economic resources are a prime barrier to achieving a bachelor’s degree, and as family income goes up the odds of completing college rise precipitously. But as in all statistical effects, this is what happens “on average.” Our concern here is not about the average effect of money on education. We want to know what happens to education in the extreme “right tail” of an economic distribution, what we are calling “the super-rich” (the left tail would be “the poor”).

It is not that the right tail of the economic distribution has been ignored. Studies of elites and education abound, and especially important contributions come from investigations of highly selective prep schools, colleges, and universities (e.g., Bourdieu and Passeron, 1979; Khan, 2011; Massey et al., 2002; Soares, 2007). There is a gap, however. When it comes to economic elites and education, the research community has “selected on the dependent variable.” That is, the rich go to college is presumed, and then studies look inside schools at elites who have previously made a decision to invest in education. This approach, while fruitful, leapfrogs more basic questions of rates of elite educational investment in the first place. Do the rich go to and complete college at uniformly high rates, or is there variation even at the high end? Despite this article’s obvious deduction that it is rational for the super-rich to turn away from education, no one has bothered to examine if such a phenomenon exists and if so its prevalence (cf. Mangino, 2012).

We will show that indeed there are important variations in the relationship between money and educational investment at the extreme high end of the economic distribution. While the Add Health data are not ideal for such an assessment, our privilege hypothesis will be supported, albeit tentatively. The super-rich, defined as children from the top 1 percent of the family income distribution, fail to achieve the bachelor’s degree at disproportionately high rates, given what their family income would otherwise predict. This turn away from education by the super-rich, we argue, is another instance of the larger moment. Like gender and race, the category that is privileged in the subfields of status attainment is the same category that "underinvests" in the field of education. Men complete college less than women; whites complete college less than nonwhites; and the children of the top 1 percent of wage earners complete college at rates significantly lower than one would expect given their parents’ exceptional economic success. In a final statistical permutation, we will show that taken as a single category, rich white men are less likely to complete the bachelor’s degree than everyone else.
Statistical Analysis

Data

To support the privilege hypothesis, we use Waves 1 and 4 of the National Longitudinal Study of Adolescent Health (Add Health), a nationally representative sample of Americans who in 1994–1995 attended a public or private high school with more than 30 students. For each high school sampled, a feeder (middle) school was also surveyed. From Wave 1 (1994–1995) we employ three components: (1) the “in-school” interview, (2) the “in-home” interview, and (3) the interview of the respondent’s parent. These instruments provide detailed information about social, economic, psychological, and physical wellbeing of respondents when they were in high school. There are extensive data on families, neighborhoods, and schools, including U.S. Census information. Its longitudinal nature allows researchers to assess how social and contextual life during adolescence shapes later outcomes, like achievement of a college degree. All predictor variables used here are taken from Wave 1, while the outcome, educational attainment, is drawn from Wave 4, which occurred in 2008. By Wave 4, all respondents were aged between 25 and 34 years, old enough to reliably assess achievement of the four-year degree. About 11,000 respondents took part in the four phases of data collection employed in this article; we refer to this group as the “full sample.” Note that Add Health uses a nested, multi-level sampling design. All statistics that follow use the appropriate weight variables to correct for the sampling procedure (Chantala and Tabor, [1999] 2010).

Educational Attainment in Add Health

For the full sample (unweighted \(N = 10,719\)), we measured educational attainment as self-reported at Wave 4. From the numerous educational gradations in the original questions, we distilled a single ordinal measure indicating four levels of educational attainment as reflected in Table 1. High school non-completers are 9 percent of the sample; high school completers (including GED) who did not attend college are 27 percent of the sample; college starters (including junior colleges, but excluding vocational training) are 34 percent; and 31 percent of respondents are college completers (earned a four-year degree; i.e., a BA or above).

In describing who starts college and who finishes, we employ an educational transitions methodology that is perhaps the most widely used approach to studying educational stratification (Lucas, 2010). The technique looks at education as a series of yes-or-no continuations, where commencement of

\[\text{See } <\text{http://www.cpc.unc.edu/projects/addhealth}> \text{ for a complete description of Add Health.}\]
TABLE 1
Educational Attainment in the Add Health Wave 4 Data

<table>
<thead>
<tr>
<th>Distribution in Full Sample</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 High school “noncompleters”</td>
<td>9%</td>
</tr>
<tr>
<td>2 High school completers (including GED) who did not attend college</td>
<td>27%</td>
</tr>
<tr>
<td>3 College starters (including junior colleges, but excluding vocational training)</td>
<td>34%</td>
</tr>
<tr>
<td>4 College completers (a four-year bachelor’s degree or above)</td>
<td>31%</td>
</tr>
</tbody>
</table>

Note: 3 and 4 combined are the “college sample.”

one level of education is contingent upon completion of the previous. For example, achieving a BA is possible only for people who have entered college, just as entering college is available only to people who have attained a high school diploma. We continue this approach by predicting for only people who have started college their likelihood of completing a four-year degree.

We focus exclusively on the bachelor’s degree because Mangino (2012) has already analyzed high school completion (using transcript data) and entrance into college using Add Health’s Wave 3 release. College completion was not included in the earlier study because at Wave 3, the sample was too young to have completed four years of postsecondary education. Now with the recent release of Wave 4, achievement of a college degree can be assessed. This study thus combines with Mangino (2012) to provide a comprehensive, Add-Health-based depiction of the major educational transitions in contemporary American society.

To assess college completion from our full sample, we are interested in the 65 percent (unweighted \(N = 7,241 \)) of respondents who achieved level 3 or 4 on the aforementioned educational attainment variable. We call this subsample “the college sample.” Except where noted, our statistics that follow are representative of only those people who completed high school and then made the transition to higher education, excluding vocational programs.

Table 2 shows descriptive statistics for the full sample, for each level of educational attainment, and for the college sample. Among those who make the transition to college, 52 percent never achieve the BA, while about 48 percent of those who enter get a four-year degree.

The Female Advantage

To begin our analysis, we first show the effect of gender on college completion. In a bivariate correlation, the privilege hypothesis is borne out in several ways. Table 2 shows, first, that among those who enter college, women are a
TABLE 2
Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Full Sample</th>
<th>College Sample</th>
<th>Educational Attainment<sup>a</sup></th>
<th>Super-rich (college sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (unweighted)</td>
<td>Mean</td>
<td>SD</td>
<td>Min</td>
</tr>
<tr>
<td></td>
<td>10,719</td>
<td>7,241</td>
<td>1,240</td>
<td>748</td>
</tr>
<tr>
<td>Educational attainment<sup>b</sup></td>
<td>2.87</td>
<td>0.95</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Male</td>
<td>0.50</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Parent's income (thousands)</td>
<td>45.55 45.56</td>
<td>0</td>
<td>999</td>
<td>52.03</td>
</tr>
<tr>
<td>Par inc top 1%</td>
<td>0.01 0.08</td>
<td>0</td>
<td>1</td>
<td>0.01 0.09</td>
</tr>
<tr>
<td>White</td>
<td>0.70 0.46</td>
<td>0</td>
<td>1</td>
<td>0.73 0.45</td>
</tr>
<tr>
<td>Black</td>
<td>0.15 0.36</td>
<td>0</td>
<td>1</td>
<td>0.14 0.35</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.10 0.30</td>
<td>0</td>
<td>1</td>
<td>0.09 0.28</td>
</tr>
<tr>
<td>Asian</td>
<td>0.03 0.16</td>
<td>0</td>
<td>1</td>
<td>0.03 0.18</td>
</tr>
<tr>
<td>Other</td>
<td>0.02 0.13</td>
<td>0</td>
<td>1</td>
<td>0.02 0.13</td>
</tr>
<tr>
<td>Two biological parents</td>
<td>0.57 0.49</td>
<td>0</td>
<td>1</td>
<td>0.62 0.48</td>
</tr>
<tr>
<td>N siblings</td>
<td>2.73 2.22</td>
<td>0</td>
<td>20</td>
<td>2.50 2.00</td>
</tr>
<tr>
<td>Northeast</td>
<td>0.15 0.36</td>
<td>0</td>
<td>1</td>
<td>0.17 0.37</td>
</tr>
<tr>
<td>Urban</td>
<td>0.26 0.44</td>
<td>0</td>
<td>1</td>
<td>0.23 0.42</td>
</tr>
<tr>
<td>Intergenerational closure</td>
<td>2.23 1.93</td>
<td>0</td>
<td>6</td>
<td>2.48 1.99</td>
</tr>
<tr>
<td>N friends good</td>
<td>0.74 1.12</td>
<td>0</td>
<td>13</td>
<td>0.90 1.25</td>
</tr>
<tr>
<td>N friends bad</td>
<td>0.57 0.88</td>
<td>0</td>
<td>7</td>
<td>0.51 0.82</td>
</tr>
<tr>
<td>Academic orientation</td>
<td>0.03 0.82</td>
<td>−3.91</td>
<td>2.06</td>
<td>0.29</td>
</tr>
</tbody>
</table>

^aWeighted data, therefore Ns do not match proportions.
^bEducational attainment: 1, high school noncompleters; 2, high school completers, no college; 3, college starters, no BA; 4, college completers (BA or higher).
clear majority; men make up only 46 percent of the college sample. Further evidence is gathered in that even after considering the gender bias in college attendance, males are overrepresented among “noncompleters.” That is, they are 46 percent of the college sample, but 48 percent of those who fail to get a BA.

To test if these relationships are “real” or just random variations, model 1 in Table 3 presents the bivariate relationship between gender and college completion as a logistic regression, which is an appropriate test for “yes-or-no” outcomes. All regressions in this article report “odds ratios.” An odds ratio (OR) above 1.00 means that as the independent variable increases, the odds of a “yes” on the outcome go up. An OR below 1.00 indicates that a unit increase in the independent variable makes the odds of “yes” go down. As references, 0.50 means the odds of a “yes” are cut in half and 2.00 means the odds are doubled.

Model 1 shows that the gender difference in achieving the BA is statistically significant. The OR (0.87) indicates that on average, given college entrance, men are about 13 percent less likely to complete college than women. Part of our task will be to see if this bivariate relationship holds as other predictors are included in the regression equation.

Parent’s Income

Our next privilege variable is, in some ways, both most obvious and most counterintuitive. We hypothesize that money should function the same way as gender—the category that is privileged in the labor market will have lower educational attainment. Detecting an effect of economic privilege causing a turn away from education, however, is a complicated matter. In what follows, we consider parent’s total household income.

In Wave 1, a parent of each respondent was asked to state household income from all sources in 1994. Like many large-scale surveys, Add Health has a substantial number of missing values: 23 percent of parents failed to complete the income question. We impute these missing values using two independent variables: (1) the mean parent’s income of the respondent’s school and (2) the median household income of the respondent’s census block. Given the known associations between residence, school attendance, and wealth, these geographically proximate measures produce a valid substitute for the missing values. It is important to note that parent’s income is skewed to the right with a very long tail (none of the imputed values fall in the tail). This “elite” will become the focus of our analysis.

Table 2 shows, in 1994 dollars, that the average parent’s income among all college goers was $52,035. We also see the positive correlation between income and college completion: parent income of respondents who achieve the BA averaged about $61,626, while parents of noncompleters earned only $43,257. Clearly, money matters.

Model 2 (Table 3) depicts the relationship between parent’s income (in thousands) and child’s completion of college as a logistic regression. The
TABLE 3
Logistic Regression (Reporting Odds Ratios) Predicting Achievement of a Bachelor's Degree, Given College Attendance (Weighted Data)

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
<th>Model 7</th>
<th>Model 8</th>
<th>Model 9</th>
<th>Model 10</th>
<th>Model 11</th>
<th>Model 12</th>
<th>Model 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0.866**</td>
<td>0.803***</td>
<td>0.721***</td>
<td>0.702***</td>
<td>0.726***</td>
<td>0.721***</td>
<td>1.177</td>
<td>0.788</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.997**</td>
</tr>
<tr>
<td>Parent's income (thousands)</td>
<td>1.014***</td>
<td>1.022***</td>
<td>1.017***</td>
<td>1.017***</td>
<td>1.008***</td>
<td>1.007***</td>
<td>1.006***</td>
<td>1.006***</td>
<td>1.004***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Par inc quadratic</td>
<td></td>
<td>0.999***</td>
<td></td>
</tr>
<tr>
<td>Par inc top 1%</td>
<td>0.028***</td>
<td>0.030***</td>
<td>0.181***</td>
<td>0.225***</td>
<td>0.213***</td>
<td>0.217***</td>
<td>0.134***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.709***</td>
<td>0.926</td>
<td>1.116</td>
<td>1.252</td>
<td>1.934***</td>
<td>4.370</td>
<td>1.617</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.627***</td>
<td>0.772***</td>
<td>1.089</td>
<td>1.158</td>
<td>1.574***</td>
<td>0.288</td>
<td>0.315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1.582***</td>
<td>1.562***</td>
<td>1.439*</td>
<td>1.541***</td>
<td>1.919***</td>
<td>0.382</td>
<td>0.288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.556***</td>
<td>0.663</td>
<td>0.752</td>
<td>0.784</td>
<td>0.880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rich white male</td>
<td></td>
</tr>
<tr>
<td>Birth year</td>
<td>0.966</td>
<td>0.950***</td>
<td>0.921***</td>
<td>0.920***</td>
<td>0.923***</td>
<td>0.664</td>
<td>0.747</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two biological parents</td>
<td></td>
</tr>
<tr>
<td>Parent's education</td>
<td>1.863***</td>
<td>1.797***</td>
<td>1.500***</td>
<td>1.607***</td>
<td>1.595***</td>
<td>18.998***</td>
<td>13.057***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N siblings</td>
<td>0.883***</td>
<td>0.886***</td>
<td>0.910***</td>
<td>0.913***</td>
<td>0.927***</td>
<td>1.353</td>
<td>1.317</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>0.947</td>
<td>0.904</td>
<td>0.908</td>
<td>1.067</td>
<td>0.047</td>
<td>0.076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intergenerational closure</td>
<td>1.075***</td>
<td>1.066***</td>
<td>1.067***</td>
<td>1.054***</td>
<td>1.922***</td>
<td>1.550**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N friends good</td>
<td>1.200***</td>
<td>1.127***</td>
<td>1.125***</td>
<td>1.116***</td>
<td>4.617***</td>
<td>4.311***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N friends bad</td>
<td>0.772**</td>
<td>0.815***</td>
<td>0.811***</td>
<td>0.804***</td>
<td>2.682</td>
<td>2.460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic orientation</td>
<td></td>
</tr>
<tr>
<td>orientation</td>
<td></td>
</tr>
<tr>
<td>Model F</td>
<td>3.67**</td>
<td>45.37***</td>
<td>73.99***</td>
<td>58.88***</td>
<td>6.62***</td>
<td>17.03***</td>
<td>29.27***</td>
<td>31.58***</td>
<td>30.91***</td>
<td>3.50***</td>
<td>5.16***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.001</td>
<td>0.036</td>
<td>0.052</td>
<td>0.043</td>
<td>0.007</td>
<td>0.047</td>
<td>0.104</td>
<td>0.129</td>
<td>0.188</td>
<td>0.177</td>
<td>0.584</td>
<td>0.560</td>
<td></td>
</tr>
</tbody>
</table>

*There are no "other" in the top 2 percent of parent’s income.

*p < 0.10; **p = 0.06; ***p < 0.05.
Effect of income is significant. The OR of 1.014 means that each additional $1,000 of parent’s income improves the odds of completing the BA, given starting college, by about 1.5 percent. Figure 1.1 solves model 2 and plots for those who began college their predicted probability of completion for every $50,000 in parent’s income. The odds of completion rise steeply from poverty through the middle classes and reach 100 percent at $450,000 per year. Above that, odds are that everyone will complete college (given college enrollment).

Of course, the regression produces predicted probabilities that are mathematically constrained. Because the relationship between parent’s income and achieving a bachelor’s degree is positive and linear (i.e., each unit increase in income is associated with the same increase in odds), any potential decrease in college completion at the top end of parent’s income will not be detected; the positive correlation through the “fat” part of the distribution overwhelms it.

Our first solution to this problem is to include in the regression equation the quadratic term for parent’s income, in addition to its main effect. If a quadratic is significant, it means that a parabola, rather than a line, best fits the relationship between the predictor and the outcome. Parabolic relationships indicate accelerating or diminishing effects (depending on the signs of the coefficients) that culminate in a zenith (or nadir), after which further increases in the independent variable are associated with a reversal of the main effect. Whether the effect actually inverts or only accelerates (or diminishes) is an empirical matter based on the distribution of the parabolic variable. We will return to this issue.

Model 3 (Table 3) enters the main and quadratic terms of parent’s income. Both are significant, indicating the presence of curvilinearity, and the pseudo R^2 has improved from 0.036 (model 2) to 0.052, indicating an improved fit. The sign of the main effect remains positive, while the quadratic is negative (i.e., $OR < 1.00$). Taken together, these mean that at the low end of family income, an additional $1,000 makes a big difference for college completion, but each additional $1,000 matters less than the previous $1,000. This makes perfect sense: $1,000 is “more important” to someone with $10,000 than it is to someone with $500,000. One can easily envision the high end of such diminishing returns: in terms of achieving a bachelor’s degree, it makes little difference whether one’s parent made $500,000 per year, or $501,000.

For our purposes, there is a crucial question regarding the statistically significant negative effect of the quadratic term. Does it simply reflect “diminishing returns,” or is there an actual reversal of effect? Our answer will be less than definitive, and there are important shortcomings to the analysis that follows; however, until the super-rich are properly sampled, suggestive analyses will have to suffice.

As a first attempt to distinguish between diminishing returns and inversion, we solve model 3 in $50,000 intervals of parent’s income up to $950,000, the last increment before Add Health’s imposed maximum of $999,000. The results are displayed in Figure 1.2. It shows a zenith at $500,000 where the odds of completion are 98 percent. To the right of this focal point, the
FIGURE 1
Three Models Predicting Achievement of a Bachelor's Degree (2008) by Parent's Income (1994)
odds of completion then decrease all the way up to $950,000, where the predicted probability of college completion declines to 22 percent. This is the first, albeit tenuous, evidence supporting the privilege hypothesis. While important caveats are to be discussed, the finding is similar to Mangino (2012), who performed comparable analyses with Add Health Wave 3 data on high school completion, and, given high school success, starting college. Figure 1 thus supplies the final of three transitions—high school completion, college attendance (Mangino, 2012), college completion (this article)—all of which show a consistent parabolic effect: at the highest levels of parent’s income, the odds of a successful educational transition are reduced.

In taking Figure 1.2 as a continuation of Mangino (2012), it is important to note that the reduced odds of success across the three different transitions cannot be attributed to a single group of economically rich but academically poor respondents. The educational transitions methodology assures that those who failed at earlier transitions are eliminated from the subsequent transitions; high school “dropouts” are not in our analysis, nor are high school graduates who did not start college. Thus, the statistically significant curvilinearity found here and in the earlier study must be created anew at each transition with a different group of respondents.

While we claim Figure 1.2 as initial evidence suggesting the privilege hypothesis, there is a substantial problem. Parent’s income is massively skewed to the right. In our college sample, in thousands its mean is 52.03 and standard deviation is 51.42. This means that the zenith of the curve in Figure 1.2 is nearly nine standard deviations above the mean. Indeed, in the college sample the 99th percentile of parent’s income is at 250. The supposed reversal of effect demonstrated in Figure 1.2 is based on a tiny subsample within a highly skewed variable.

These are important criticisms; however, we will continue to analyze the high end of the distribution. First, the right skew of parent’s income in Add Health is a roughly accurate representation of the real distribution of earnings in the United States. It too is highly skewed to the right where a tiny minority of wage earners earns hundreds of times more than the average worker (Piketty and Saez, 2003). The skew is not a flaw; it is an expected marker of “cumulative advantage” (DiPrete and Eirich, 2006:274).

A more serious criticism arises in applying a quadratic term to an extremely skewed variable, and then offering interpretations far out in the tail, exactly as we are doing. Necessarily, like linear relationships, the statistically significant parabola is calculated in the “fat” part of the distribution; that is, on the left side of Figure 1.2 where the majority of observations exist. That the focal point is within “the range of real observations” might, therefore, be a mathematical artifact derived from a diminishing relationship, and the focal point is only within the range because of the extreme right skew. In fact, in models not shown, we eliminated the top 1 percent of parent’s income, and the lower 99 percent (which is quite normally distributed) showed very similar odds ratios and significance levels for parent income’s main and quadratic effects;
The Negative Effects of Privilege on Educational Attainment

The zenith was also near $500,000. However, in these not-shown models, the zenith now lies outside the range of real observations (because the top 1 percent was eliminated). The question for us, then, is about this top 1 percent. Do they complete college less than those immediately adjacent to them in the parent’s income distribution?

The Super-Rich

In what follows, we replace the parent’s income quadratic term with a dummy variable indicating if the respondent is in the highest 1 percent of the parent’s income distribution. Entering the top 1 percent flag with its main effect is methodologically similar to the quadratic effect, except that with the flag the top 1 percent is decoupled from the rest of the parent’s income distribution. As a category, their relationship with college completion is now permitted to vary independently of the main effect. This is crucial because it eliminates the possibility that the mathematics of the parabola creates a supposed reversal of effect in a highly skewed distribution. In logistic regression, a statistically significant flag with a negative sign \((OR < 1.00)\) would indicate that the odds of success for the flagged category are significantly lower than one would expect, given their level of parent’s income.

Before returning to regression, we want to check on this “super-rich.” Table 2 includes descriptive statistics for the top 1 percent of parent’s income from our college sample. All descriptives are as one would expect, given the high level of parent’s income. Compared to all college goers, the super-rich are disproportionately white, and their parents are highly educated and decidedly nonurban (variable constructions described below). They are more likely to come from the northeastern United States, and they are less likely to have had “bad-influence” friends in high school. Finally, the flagged respondents have higher “academic orientation” than the college sample at large.

Model 4 (Table 3) is a logistic regression that replaces the income quadratic with the top 1 percent flag. Compared to model 3, it is quite similar. Parent income’s main effect is basically unchanged; and like the quadratic, the flag is statistically significant and negative. Model 4 does not fit the data as well as model 3, as the pseudo \(R^2\) has decreased from 0.052 (model 3) to 0.043 (model 4), but this is still better than the main effect by itself (model 2). Note that in all analyses that follow, the flag and the quadratic are interchangeable in terms of their mediation of other variables and their overall effects. Given that the flag operates independently of parent income’s otherwise positive effect, we believe it offers a more cogent and intuitively accurate interpretation than the quadratic. We therefore take model 4 as additional tentative support for the privilege hypothesis.

Below, we will subject model 4 to control variables, after which we will interrogate the superrich in a final suggestive analysis. But before the controls are added, we wish to introduce the final privilege variable, race.
Race

Race and education, of course, are highly correlated. Common sense, the mass media, pundits, politicians, professionals, and scholars are all concerned about the “gap” in educational attainment among racial and ethnic categories in the United States. It is common knowledge that African Americans in particular are vulnerable to lowered educational attainment. Whether this is due to oppositional culture (Ogbu, 1978), the culture of poverty (Small, Harding, and Lamont, 2010), IQ (Jencks and Phillips, 1998), segregation (Orfield and Lee, 2007), or other factors is a hotly debated topic. On the other hand, Asians are labeled a “model minority” who seem to disproportionately succeed in school (see citations above), and of course this is in reference to the white majority who, apparently, invest in education in great numbers.

In the Add Health data, common sense seems to be supported, initially at least. Table 2 displays the percent of each racial category in the full and college samples, and then splits the sample by educational attainment. Relative to their representation in the college sample, whites (73 percent) are overrepresented as college completers (76 percent) and underrepresented among noncompleters (70 percent). Asians live up to the model moniker; they are 2 percent of college noncompleters and 4 percent of college completers. And clearly, blacks and Hispanics are disqualified from the BA at disproportionately high rates. Together, they comprise 23 percent of the college sample, while they are 26 percent of noncompleters and only 19 percent of those who achieve a four-year degree.

These differences are statistically significant. Model 5 displays the relationships between race/ethnicity and college completion as a logistic regression. Whites are excluded as the reference, thus every race/ethnic category is compared to white. Given college attendance, the odds of an African American attaining a four-year degree are 29 percent less than whites, and Hispanics’ odds of completion are 37 percent less than whites. Also as expected, Asian Americans invest in education at notably high rates; their odds of success are superior to whites by 58 percent.

Because race in the United States is correlated not only with education, but also with other important predictors of education, other mechanisms that disqualify people from educational attainment must be considered. If, (1) as models 2 to 4 demonstrate, low family income is associated with low college completion and (2) African and Hispanic Americans are disproportionately low income, then any seeming racial imbalance in college completion could be the result of family income. That is, the bivariate relationships could be spurious.

3Race/ethnicity was self-reported at Wave 1. We coded five mutually exclusive categories: white (non-Hispanic), black, Hispanic, Asian, and “other.”
The Negative Effects of Privilege on Educational Attainment

The Net Black Advantage

As outlined above, a widely found but not-often-enough-discussed phenomenon is known as the “net black advantage.” A growing body of evidence demonstrates that when SES is considered, black Americans invest in education at rates superior to socioeconomically similar whites. The finding is widespread across many different data sets and remains highly robust as control variables are applied.

In what follows, we will add control variables and a clear net black advantage will emerge. At the same time, the distilling of this race “effect” will attempt to falsify the other two privilege variables, gender and super-rich status. The final models will show that all privileged categories—men, the super-rich, and whites—achieve four-year college degrees at rates lower than their subordinate counterparts.

Gender, Class, and Race

Model 6 combines the three privilege variables into a single logistic regression. First, the effects of income and the top 1 percent flag are unchanged from model 4. Similarly, the relationship between gender and college completion is substantively the same as bivariate model 1.

Looking at the race variables, one indicator has changed notably. In the original bivariate model 5, black Americans were statistically less likely to achieve the BA compared to whites. Now with the inclusion of parent’s income and gender (model 6), the variable black is no longer significant and its OR (0.93) is now nearly equal to that of white. This is an important finding: Knowing only two simple demographic indicators—parent’s income and gender—eliminates the black-white “gap” in college completion. The other race variables, for the moment, remain similar to their bivariate counterparts (model 5), except for “other,” which is now not significant.

In addition to gender, income, and race, there are many other influences on college completion. We next try to measure some of these forces and include them in logical blocks in the regression equation.

Family Controls

A first block of control variables measures the respondent’s immediate family environment. These include parent’s education, if the respondent lived with

4 Each resident parent’s education was coded as in Table 1. If the respondent lived with two parents, the variable is the average across the two; in single-parent households, the score was entered as is.
two biological parents at Wave 1, and the respondent’s number of siblings. Also included here is the respondent’s birth year. Model 7 enters these controls. As a group, they improve the fit; the pseudo R^2 has more than doubled, to 0.104. Each individual control works in expected ways. Net of other variables in the equation, living with two biological parents ($OR = 1.52$) and having more educated parents ($OR = 1.86$) both significantly improve one’s odds of completing college, while having more siblings decreases the odds ($OR = 0.88$). Birth year, while having a negative coefficient, is not significant.

Now, returning to the key variables, in model 7 parent’s income has reduced effect, but nonetheless it is still significant and positive ($OR = 1.01$). The top 1 percent flag retains significance, and is still negative ($OR = 0.18$). Gender too remains substantively the same ($OR = 0.72$). Again, however, race has changed notably. While not yet significant, the OR for black is now 1.12, meaning that in the sample black Americans finish college at higher rates than whites once parent’s income and education, gender, age, and household structure are considered. We are witnessing a “reversal” of the race gap in college completion. Just as important, Hispanics are now just like African Americans. The family variables have nullified any difference from whites, and the OR for Hispanic is now also greater than 1.00. Knowing only these few controls makes all race categories statistically the same, except for Asians, who continue to be a “model” in achieving the BA.

Social Capital and Embeddedness

As our next block of control variables, we address the respondent’s outside-of-family social capital (Coleman, 1990) and larger embeddedness. These include measures of intergenerational closure and, indicating peer effects, the number of the respondent’s friends who are “good” and “bad” influence.

5Parents’ marital status and number of siblings are reflections of Coleman’s (1990) ideas about within-family social capital. Our analyses (not shown) determined that the meaningful difference in parents’ marital status is if the child lived with two biological parents. The absence of a parent potentially means that children are less subject to monitoring and therefore more free for pursuits of the “adolescent society.” Number of siblings is important because when there are more children, more resources are needed.

6Intergenerational closure is conceptualized by Coleman (1990) and researched in countless empirical studies (see Fasang, Mangino, and Brueckner (2010) for a review). It assesses if a parent knows her/his child’s friends’ parents. As more parents know each other, social control over the children increases and norms of academic performance can more easily be enforced. In Add Health, it is measured by the parent’s report on the number of parents of the child’s friends she/he had spoken to in “the last four weeks.”

7Peer influence and/or “selection” (de Klepper et al., 2010) is well documented in achievement literature (e.g., Crosnoe, Cavanagh, and Elder, 2003; Fletcher and Tienda, 2009). Here, we build on Mangino (2009) by counting the respondent’s number of “good-influence” and “bad-influence” friends. During the in-school interview, respondents could name 10 friends. In most cases, friends were also respondents, thus data are available for them. We cross-classified each of these friends along two indices, school orientation and deviance. School orientation was created from five items, including college expectations, trying hard at schoolwork, and
Indicating larger patterns of embeddedness, the variable urban notes if the respondent lived in a city; and Northeast indicates that the respondent resided in the northeastern United States (both as of Wave 1).

Model 8 shows that as a block, these five predictors are an improvement over model 7 as the pseudo R^2 has increased to 0.129. Individually, living in the Northeast improves the odds of completing college ($OR = 1.84$), while controlling for the other variables. Urban is not significant, but it is still important given the high correlation between race and urbanicity (Mangino, 2010). Intergenerational closure is significant. This says that controlling for the other variables in the equation, each additional parent the respondent’s parent talked to improves the odds of college completion by about 8 percent. Peer influence works exactly like one would expect. Each additional “good-influence” friend from high school improves the odds of finishing college by 20 percent. Conversely, but with consistent effect, each additional “bad-influence” friend reduces the odds by 23 percent, net of other variables.

Returning to the privilege variables, income and the top 1 percent flag remain similar to the previous model, as does gender. The most noteworthy change is again in the race variables. A statistically significant net black advantage has come to fruition. Given equality on the included variables, African Americans are now 25 percent more likely than whites to complete college. In the sample, Hispanics are more likely than whites to complete college; however, this is not yet significant, while Asians remain superior to whites.

Model 9 is the full model. It adds to the above a measure of prior academic skills (Harris and Robinson, 2007), or what we call “academic orientation.” The variable is a standardized Cronbach’s alpha that combines the respondent’s Peabody picture vocabulary score and her/his GPA. The unit is standard deviation. In model 9, the variable is significant and shows that with each standard deviation increase in academic orientation, the odds of completing college nearly triple ($OR = 2.74$). Accordingly, the pseudo R^2 has risen to 0.188, indicating a reasonably good fit.

Returning to the other variables in model 9, except for urban and “other” race, every variable is now statistically significant and works in ways as described above. Most importantly, the “net black advantage” is no longer black; it is now a white “handicap” as all race/ethnic categories (except other) are more likely to complete college; their odds ratios are quite similar. As before, the top 1 percent flag and gender remain significant and consistent. All three privilege categories—men, income’s top 1 percent, and whites—complete college at disproportionately low rates.

three items assessing school attachment (Cronbach’s alpha = 0.70). Deviance assesses getting drunk, doing a dangerous dare, lying, cutting school, and fighting (Cronbach’s alpha = 0.78). Compared to children of the same age and gender, friends in both the highest 25 percent of school orientation and the lowest 25 percent of deviance were defined as “good influence” while “bad influence” are those in the lowest 25 percent of school orientation and highest 25 percent of deviance. All other friends are “average” influence.
Now that all the race variables are significant (except other) and operate in the same direction, model 10 makes only a mathematical change by reversing the race variables. Here, white is now included, all other race/ethnic variables are excluded; thus, whites are compared to nonwhites. Accordingly, all privilege variables are now dichotomous. The effects are virtually identical to model 9 (as they should be), except model 10 is more parsimonious as it expresses the same relationships with fewer (race) variables.

With all three privilege variables being dichotomous, we can now create model 11, which combines them into a single indicator, “rich white men.” Indeed as a single category compared to everyone else, rich white men are less likely to achieve a bachelor’s degree. That is, given equal social origin and academic orientation, the traditionally most privileged category in the United States is the least likely to complete college.

A Final Interrogation of the Super-Rich

Model 12 returns to the three separate privilege variables and the individual race/ethnicity indicators. It runs the analysis for only the top 2 percent of the parent’s income distribution. The top 2 percent (unweighted \(N = 124\)) is chosen so the top 1 percent can be compared to those immediately adjacent to them in the parent’s income distribution. Model 12 includes only the top 1 percent flag (and not the main effect), thus it compares the top 1 percent of parent’s income to the second 1 percent. The flag is negative and significant, meaning that the top 1 percent as a group are less likely to complete college than the reference category, the second 1 percent.

A final iteration is presented in model 13. It is the same as model 12, except the top 1 percent flag is replaced with the main effect of parent’s income. It thus checks for a “linear” relationship between parent’s income and college completion among the top 2 percent of parent’s income. Indeed, the effect holds up. At the highest end of parent’s income, each $1,000 increase is associated with a decline in the odds of achieving a bachelor’s degree (\(OR = 0.997\)). Figure 1.3 completes our statistical analysis and plots the predicted probabilities of college completion from model 13 in $50,000 increments of parent’s income from $450,000 to $950,000, with all other variables set to their mean. The statistically significant negative effect is apparent. We consider this the best test of the privilege hypothesis as applied to parent’s income using the Add Health data.

Conclusion

The preceding statistical analysis demonstrated that among those who enroll in college, three historically privileged categories of people in the United
States—men, the top 1 percent of the income distribution, and whites—all complete the bachelor’s degree at disproportionately low rates. For gender and parent’s income, the effect appears in the bivariate case and withstands the addition of control variables, including within-family structure, social capital, social embeddedness, and individual academic orientation. For race, these control variables are key. In bivariate relationships, whites and “model minority” Asians outperform blacks and Hispanics. But as each block of controls is added the advantage for whites diminishes and then reverses. Among people from similar socioeconomic backgrounds, all nonwhites—Asians, Africans, and Latinos—achieve the BA at nearly identical rates, higher than whites. Our gender and race analyses are robust and inspire confidence that the findings are “real” and not due to chance. Our analysis of the “super-rich,” however, is far from perfect. Add Health was not designed to sample the super-rich, and thus there are very few super-rich respondents from which to make inferences. However, given the data we are working with, we claim tentative support for the privilege hypothesis. Children from the top 1 percent of parent’s income in our college sample are less likely to attain the bachelor’s degree, given what their high parent income would otherwise predict. This effect was clarified when we compared the top 1 percent of parent income to the second 1 percent, and again, the more privileged category had a higher likelihood of failure. Finally, when all three privilege variables are combined into a single category, rich white men complete the BA less than everyone else.

On the surface these findings seem to be a contradiction. The pairing of privilege and education is standard fare for the two main sociological programs on educational attainment, mobility theory and reproduction theory. Despite the seeming contradiction, we believe our results are still in accordance with both and can be summarized thusly: given the economic resources to do so, it is rational to invest in educational credentials to the point that a satisfactory opportunity presents itself. Apparently, such satisfactory opportunities present themselves to privileged people at earlier points in their educational careers. Conversely, those who desire status attainment, but have not found a satisfactory opportunity, will continue on and invest in the next level of education. Because of their historically underprivileged status in the United States, nonwhites and women need more education to be accorded a given level of legitimacy, remuneration, and respect, compared to their white and male counterparts. The super-rich simply do not need a college degree to assume privileged status.

While all three outcomes are examples of the same type, we are surprised that no one has linked the two most widely found results, the net black advantage and the female advantage. Theorizing about the net black advantage has been limited (cf. Mangino, 2010; Mason, 1997), while analyses about gender and education have been richly theorized. As summarized in the introduction, we believe explanations of gender and education provide the best overall impetus for unifying the seemingly contradictory “advantages” we have demonstrated.
Advantages in the field of education stem from disadvantages in the field of status attainment.

Formative articles about the female advantage are Mickelson (1989, 2003). She questions why women perform so well in school, despite that they get comparatively low returns on educational investments. She imports Ogbu’s (1978) insights that many African Americans seem to outwardly reject educational attainment as a result of caste-like oppression. In Ogbu’s argument, blocked opportunities and an association of education with privilege lead racial minorities to develop an overt opposition to schooling because it is seen as siding with the oppressor and “acting white.” Mickelson notes the similarity of condition between racial minorities and women in the United States and deduces that women too should be oppositional; but instead she finds they are not. Mickelson marshals an impressive literature review showing how since about 1970 women outperform men in many academic measures, including attainment of the bachelor’s degree. To explain why women continue to excel at schooling, despite that their rewards are not commensurate with men, Mickelson poses four important hypotheses: reference group theory (women compare themselves to other women), pollyannaishness (women believe rewards are now equal), powerlessness (women use education to attract a high-status male), and sex-role socialization (women are socialized to be “good and obedient”). All of these proposals are compelling and certainly contribute to explaining why Jane reads and writes so well; however, we believe that there is another hypothesis that Mickelson overlooked. We argue that it is precisely because of such lower returns on human capital investment that disadvantaged categories of people overinvest in education. Our interpretation emphasizes the hegemonic nature of the educational choice. Women and nonwhites can be aware of their disadvantageous social and cultural capital. In the pursuit of status, then, it is either accept the diminished returns to education, or accept even deeper subordination to the privileged. Framed this way, we see no anomaly in women’s educational attainment and no reason to doubt the veracity of blacks and Latinos, like Asians, being model minorities.

REFERENCES

The Negative Effects of Privilege on Educational Attainment

The Negative Effects of Privilege on Educational Attainment

